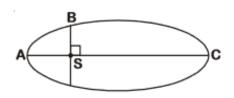
MADE EASY&NEXT IRS GROUP

PRESENT

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Maximum Marks : 720

Time : 3 Hours


NEET – 2018

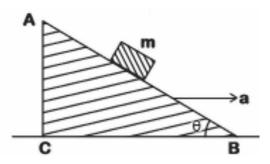
IMPORTANT INSTRUCTIONS

- 1. The test is of 3 hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 2. Use Blue / Black Ballpoint Pen only for writing particulars on this page/marking responses.
- **3.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 4. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 5. The CODE for this Booklet is KK.
- 6. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 7. Each candidate must show on demand his/her Admission Card to the Invigilator.
- **8.** No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 9. Use of Electronic/Manual Calculator is prohibited.
- **10.** The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 11. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- **12.** The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet.

Section-I (PHYSICS)

1. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A, K_B and K_C, respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

 $K_A > K_B > K_C$ (2) $K_B < K_A < K_C$ (1) $B_{\rm B} > K_{\rm A} > K_{\rm C}$


(3)
$$K_A < K_B < K_C$$
 (4) K_B

2. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (Kt) as well as rotational kinetic energy (K_r) simultaneously. The ratio K_t : ($K_t + K_r$) for the sphere is

(1)	5:7	(2)	10:7	(3)	7:10	(4)	2:5

3. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increase keeping its mass same. Which of the following physical quantities would remain constant for the sphere?

- Moment of inertia Rotational kinetic energy (1) (2)
- (3) Angular velocity Angular momentum (4)
- 4. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times large in magnitude, which of the following is not correct?
 - (1) Walking on the ground would become more difficult
 - (2) Time period of a simple pendulum on the Earth would decrease
 - (3) Raindrops will fall faster
 - (4) 'g' on the Earth will not change
- 5. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a unifo electric field E .Due to the force qE, its velocity increases from 0 to 6 m/s in one second duration. At tl instant the direction of the field is reversed. The car continues to move for two more seconds under t influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds a respectively
 - 1 m/s, 3 m/s(1) (2) (3) 2 m/s, 4 m/s(4)
- 1 m/s, 3.5 m/s 1.5 m/s, 3 m/s
- 6. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is
 - $a = \frac{g}{\sin\theta}$ (2) (1) $a = g \cos \theta$
 - $a = \frac{g}{\csc\theta}$ (4) (3) $a = gtan\theta$

The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by 7. $-4\hat{i}-\hat{j}-8\hat{k}$ (2) $-7\hat{i}-8\hat{j}-4\hat{k}$ (3) $-8\hat{i}-4\hat{j}-7\hat{k}$ (4) $-7\hat{i}-4\hat{j}-8\hat{k}$ (1) 8. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is (1) 0.525 cm (2) 0.053 cm (3) 0.521 cm (4) 0.529 cm 9. The volume (V) of a monatomic gas varies with its temperature (T), as shown in V the graph. The ratio of work done by the gas, to the heat absorbed by it, when it R undergoes a change from state A to state B, is Ö Т $\frac{2}{3}$ $\frac{2}{7}$ (1) (2) (3) (4) 10. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. the length of the closed organ pipe is 20 cm, the length of the open organ pipe is (1) 8 cm (2) 12.5 cm (3) 13.2 cm (4) 16 cm At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from t 11. Earth's atmosphere? (Given :Mass of oxygen molecule (m) = 2.76×10^{-26} kg) (Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$) 8.360×10^4 K (2) 5.016×10^4 K (3) 2.508×10^4 K (4) 1.254×10^{4} K (1) The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is 12. (1) 20% (2) 6.25% (3)26.8% (4) 12.5% A carbon resistor of (47 ± 4.7) k Ω is to be marked with rings of different colours for its identification. T 13. colour code sequence will be Yellow – Violet – Orange – Silver (2) Yellow - Green - Violet - Gold (1) (3) Violet - Yellow - Orange - Silver (4) Green - Orange - Violet - Gold A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and interi 14. resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same batte Then the current drawn from battery becomes 10 I. The value of 'n' is 9 11 20 10 (4) (1) (2) (3) 15. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r'each) which a connected in series. The terminals of the battery are short-circuited and the current I is measured. Which the graphs shows the correct relationship between I and n? ↑

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

(3)

Ó

(4)

O

~

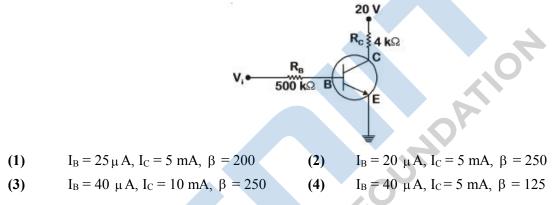
Ó

(2)

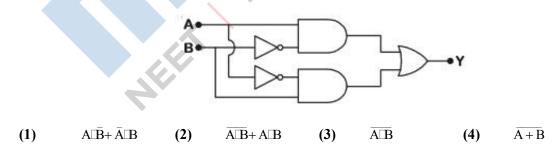
(1)

O

- 16. An em wave is propagating in a medium with a velocity $V = V\hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave wi be along
 - (1) +z direction (2) -y direction (3) -z direction (4) -x direction
- 17. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the trefracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic ligentering the prism from the other face will retrace its path (after reflection from the silvered surface) if angle of incidence on the prism is
 - (1) 45° (2) 30° (3) 60° (4) Zero


18. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object displaced through a distance of 20 cm towards the mirror, the displacement of the image will be

- (1) 36 cm away from the mirror (2) 30 cm towards the mirror
- (4) 36 cm towards the mirror (3) 30 cm away from the mirror
- The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) 138.88 H (2) 1.389 H (3) 0.138 H (4) 13.89 H
- **20.** An electron of mass 'm' with an initial velocity $V = V_0 i$ ($V_0 > 0$) enters an electric field $E = -E_0 i$ ($E_0 = constant > 0$) at t=0. If λ_0 is its De Broglie wavelength initially, then its de-broglie wavelength at time t i
 - (1) $\lambda_o \left(1 + \frac{eE_o}{mV_o}t\right)$ (2) $\lambda_o t$ (3) $\frac{\lambda_o}{\left(1 + \frac{eE_o}{mV_o}t\right)}$ (4) λ_o
- 21. For a radioactive material, half-life is 10minutes. If initially there are 600 number of nuclei, the time tak (in minutes) for the disintegration of 450 nuclei is
 (1) 10
 (2) 30
 (3) 20
 (4) 15
- **22.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is (1) 1:-1 (2) 2:-1 (3) 1:1 (4) 1:-2
- 23. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, 1 maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to v_0 , the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is (1) 1:4 (2) 4:1 (3) 1:2 (4) 2:1
- 24. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particu angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Whi of the following options is correct for this situation?
 - (1) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
 - (2) $i = \sin^{-1}\left(\frac{1}{\mu}\right)$
 - (3) Reflected light is polarised with its electric vector parallel to the plane of incidence
 - (4) $i = \tan^{-1}\left(\frac{1}{\mu}\right)$


- 25. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) Large focal length and small diameter (2) La
- (2) Large focal length and large diameter
 - Small focal length and large diameter (4) Small focal length and small diameter

26. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the ligused is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation betwee the slits needs to be changed to

- (1) 1.9 mm (2) 2.1 mm (3) 1.8 mm (4) 1.7 mm
- 27. In the circuit shown in the figure, the input voltage V_i is 20V, $V_{BE}=0$ and $V_{CE}=0$. The values of I_B, I_C a β are given by

- 28. In a p-n junction diode, change in temperature due to heating
 - (1) Affects only forward resistance
 - (2) Does not affect resistance of p-n junction
 - (3) Affects only reverse resistance
 - (4) Affects the overall V I characteristics of p-n junction
- 29. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- **30.** A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can t adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 339 m/s (2) 350 m/s (3) 330 m/s (4) 300 m/s

5

(3)

- 31. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge (and area A, is
 - Linearly proportional to the distance between the plates (1)
 - (2) Proportional to the square root of the distance between the plates
 - (3) Independent of the distance between the plates
 - (4) Inversely proportional to the distance between the plates
- 32. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed elect field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allow to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison the time of fall of the proton is

(1)	5 times greater	(2)	10 times greater
(3)	Smaller	(4)	Equal

A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a similar 33. harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from 1 mean position. The time period of oscillation is (4) 1s

- (1) (2) 2s(3) $2\pi s$ πs
- A metallic rod of mass per unit length 0.5 kg m^{-1} is lying horizontally on a smooth inclined plane which 34. makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is 7.14 A 14.76 A (3) (4) 11.32 A

5.98 A (2) (1)

Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular 35. deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is

- 25 Ω 250 Ω 40 Ω 500 Ω (1) (2) (3)(4)
- A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in th 36. electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) The magnetic field
 - (2) The lattice structure of the material of the rod
 - (3) The current source
 - The induced electric field due to the changing magnetic field (4)
- 37. An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of en $V = 10 \sin 314 t$. The power loss in the circuit is
 - 0.43 W (2) 2.74 W 0.79 W (1) (3) (4) 1.13 W
- The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If t 38. temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_0$, 1 power radiated by it becomes nP. The value of n is
 - 256 81 (1) (3) (2) (4) 3 81 256

39.

- Two wires are made of the same material and have the same volume. The first wire has cross-sectional au A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount? (1) 6 F (2) 4 F (3) 9 F (4) F **40**. A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to visco force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to r^2 (2) r⁵ (3) r^3 r^4 (1) (4) A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy 41. to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is 208.7 J (2) 42.2 J (3) 104.3 J 84.5 J (1) (4) 42. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to
 - (1) D $\frac{7}{5}$ D (4) $\frac{5}{4}$ D $\frac{3}{2}D$ (3)
- Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), eachhave the same ma 43. M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amount of work (W) required to bring them to rest, would satisfy the relation
 - (2) $W_B > W_A > W_C$ (4) $W_A > W_C > W_B$ $W_A > W_B > W_C$ (1) $W_C > W_B > W_A$ (3)
- **44**. A moving block having mass m, collides with another stationary block having mass 4m. The lighter blo comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - 0.25 (2) 0.8 (3) 0.5 (4) 0.4(1)
- Which one of the following statements is incorrect? 45.
 - Limiting value of static friction is directly proportional to normal reaction. (1)
 - Frictional force opposes the relative motion. (2)
 - (3) Rolling friction is smaller than sliding friction.
 - Coefficient of sliding friction has dimensions of length. (4)

Section - II (CHEMISTRY)

46.^E Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

		Column I				Column II		
	(a)	Co ³⁺			(i)	$\sqrt{8}$ B.M.		
	(b)	Cr ³⁺			(ii)	$\sqrt{35}$ B.M.		
	(c)	Fe ³⁺			(iii)	$\sqrt{3}$ B.M.		
	(d)	Ni ²⁺			(iv)	$\sqrt{24}$ B.M.		
					(v)	$\sqrt{15}$ B.M.		
		a	b	c		d		
	(1)	(i)	(ii)	(iii)		(iv)		
	(2)	(iv)	(i)	(ii)		(iii)		~
	(3)	(iv)	(v)	(ii)		(i)		0
	(4)	(iii)	(v)	(i)		(ii)		
47. ^E	Iron carb	onyl, Fe(CO)5 is	5					
	(1)	mononuclear	(2)	trinuclear	(3)	tetranuclear	(4)	di-nuclear
48. ^E	The type	of isomerism sh	own by	the complex [Co	Ch(en)	lis		
40.	(1)	Coordination is	-	· -	(2)	Ionization ison	nerism	
	(1)	Geometrical iso			(2)	Linkage isomer		
M						-		_
49. ^M			-			d paramagnetism		
	(1)	$Cr_2O_7^{2-}$	(2)	MnO_4^-	(3)	CrO_4^{2-}	(4)	MnO_4^{2-}
50. ^M	The geor	netry and magne	tic behav	vior of the com	olex [Ni(CO) ₄] are		
	(1)	tetrahedral geor			L			
	(2)			and paramagne	tic			
	(3)	square planar g	eometry	and diamagneti	c			
	(4)	tetrahedral geor	metry an	d paramagnetic				
51. ^M	A mixtur	e of 2.3 g formio	e acid an	d 4.5 g oxalic ad	cid is tre	ated with conc. I	H ₂ SO ₄ . T	The evolved gaseous
	mixture i	s passed through	ı KOH p	ellets. Weight (i	in g) of t	he remaining pro	oduct at	STP will be
	(1)	3.0	(2)	2.8	(3)	1.4	(4)	4.4
52. ^M	The diffe	rence between a	mylose a	and amylopectir	n is:			
	(1)	Amylose have	$1 \rightarrow 4 $ o	ι -linkage and 1	$\rightarrow 6 \beta$	-linkage		
	(2)	Amylopectin ha	ave $1 \rightarrow$	•4 α -linkage ar	nd 1 \rightarrow	6 β-linkage		
	(3)	Amylopectin ha	ave $1 \rightarrow$	•4 α -linkage ar	nd 1 \rightarrow	6 α -linkage		
	(4)	Amylose is ma	de up of	glucose and gal	actose			

53.^E Regarding cross-linked or network polymers, which of the following statements is *incorrect*?

- (1) They are formed from bi and tri-functional monomers.
- (2) Examples are bakelite and melamine
- (3) They contain covalent bonds between various linear polymer chains
- (4) They contain strong covalent bonds in their polymer chains.

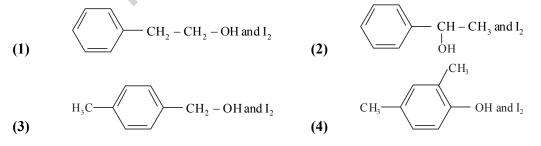
54.^E Nitration of aniline in strong acidic medium also gives m-nitroaniline because

- (1) In electrophilic substitution reactions amino group is meta directive.
- (2) In absence of substituents nitro group always goes to m-position
- (3) In spite of substituents nitro group always goes to only m-position
- (4) In acidic (strong) medium aniline is present as anilium ion
- **55.**^E Which of the following oxides is most acidic in nature?

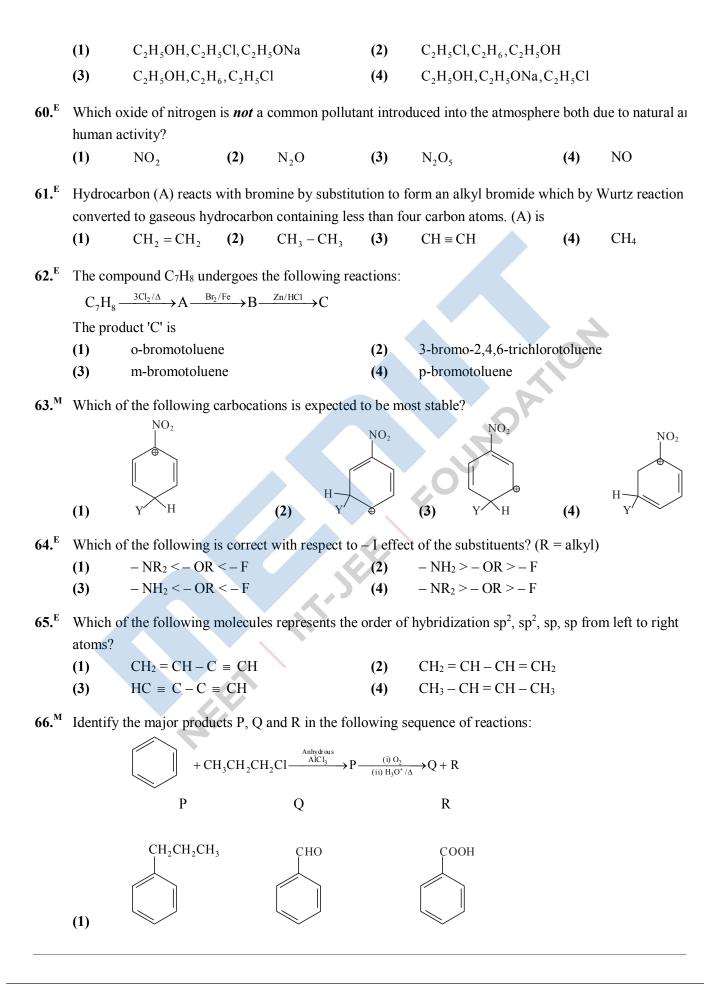
 O^-Na^+

56.^E In the reaction

The electrophile involved is

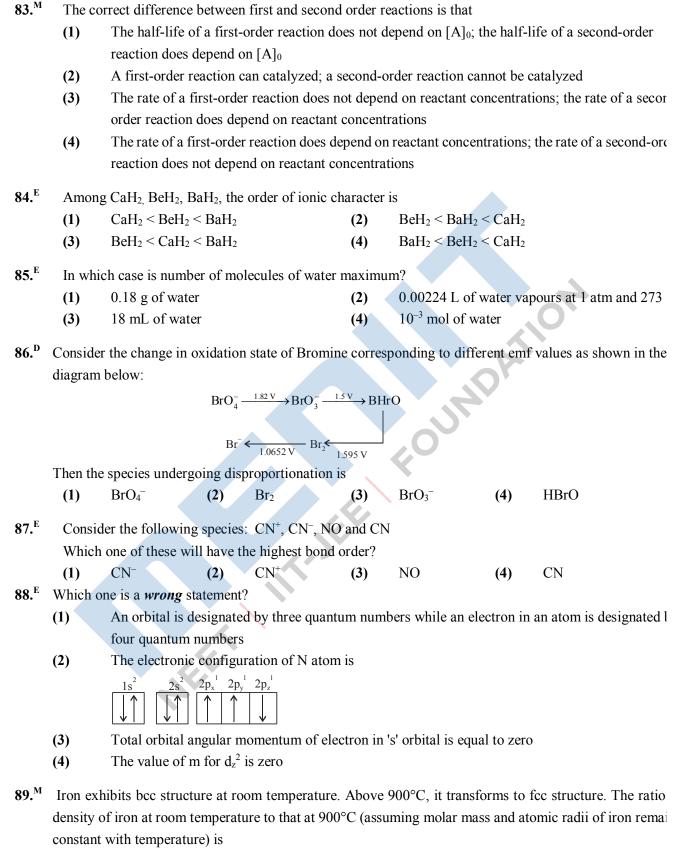

- (1) formyl cation ($\tilde{C}HO$) (2) dichloromethyl anion ($\bar{C}HCl_2$)
- (3) dichloromethyl cation $(CHCl_2)$ (4) dichlorocarbene (:CCl₂)
- 57.^E Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their

CHO


(1) formation of carboxylate ion

+CHCl₃ + NaOH

- (2) more extensive association of carboxylic acid via van der Waals force of attraction
- (3) formation of intramolecular H-bonding
- (4) formation of intermolecular H-bonding
- **58.**^M Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively


59.^E The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order.

	(2)	CH ₂ CH ₂ CH	(CH ₃) ₂	ОН СНО		CH ₃ C	H(OH)C	'H ₃		
	(3)	СН	(CH ₃) ₂	OH			CH ₃ Cl	H ₂ – OI	ł	
	(4)						CH ₃ –	CO – C	CH ₃	
67. ^M	Which of	f the following	compour	nds can form a z	witterior	1?				
	(1)	Acetanilide	(2)	Benzoic acid		(3)	Aniline	e	(4) G	lycine
68. ^M		-	e prepar	ed by mixing dif	ferent vo	olumes o	of NaOH	and HO	Cl of differen	it
	concentr			M				M	М	_
	a.	$60 \text{mL} \frac{\text{M}}{10} \text{HCl}$	+ 40mL	$\frac{10}{10}$ NaOH		b.	55mL-	HCl	$+45 \text{mL} \frac{\text{M}}{10} \text{N}$	laOH
	c.	$75 \text{mL} \frac{\text{M}}{5} \text{HCl}$	+ 25mL ·	$\frac{M}{5}$ NaOH		d.	100mI	$L\frac{M}{10}HC$	$1+100 \text{mL} \frac{\text{N}}{10}$	I NaOH)
	pH of v	which one of the	em will b	be equal to 1?						
	(1)	a	(2)	d	(3)	b		(4)	c	
69. ^E	On whic			erties does the co	agulatin	g power	of an ior	n depen	d?	
	(1) (2)	Size of the ion		gn of the charge	on the j	on.				
	(2) (3)			charge on the ior		511				
	(4)	The sign of ch	arge on	the ion alone						
70. ^E				r NH ₃ , H ₂ , O ₂ an		re respec	ctively 4.	17, 0.2	44, 1.36 and	3.59, whic
	one of th (1)	H ₂ H ₂	es 1s mo (2)	st easily liquefie O ₂	d? (3)	NH ₃		(4)	CO_2	
71. ^E				$ is 2.42 \times 10^{-3} g $			e value o			ıct (K _{en}) wi
, 11		n molar mass of							uonny prou	(IIsp) (II
	(1)	$1.08 \times 10^{-12} \text{ m}$ $1.08 \times 10^{-10} \text{ m}$			(2) (4)		10^{-14} mo 10^{-8} mo			
50 D	(3)			037 37 1 1 1 1 1 1	(4)					
72. ^D			-	of X_2 , Y_2 and XY dissociation energy			of I : 0.5	: ι. Δł	1 for the for	mation of
	(1)	100 kJ mol ⁻¹	(2)	800 kJ mol ⁻¹	(3)	200 kJ	mol ⁻¹	(4)	400 kJ mc	l^{-1}

MENIIT

	(1)	Is doubled	(2)	Is tripled	(3)	Is halved	(4)	Remains unchanged
4. ^E	For th	ne redox reaction	l					
		$MnO_4^- + C_2O$	$^{2-}_{4}$ + H ⁺ -	\longrightarrow Mn ²⁺ 2CO ₂	$, + H_{2}O$			
	the co	orrect coefficient	s of the	reactants for the	balanced	equation are		
			$C_2O_4^2$			*		
	(1)	2	5	16				
	(2)	2	16	5				
	(3)	16	5	2				
	(4)	5	16	2				
'5. ^E	Whic	h one of the follo	owing co	onditions will fav	or maxir	num formatior	n of the pr	roduct in the reaction,
			•	$(g); \Delta_r H = -X kJ$				
	(1)	Low temperat	ture and	low pressure	(2)	High temper	ature and	high pressure
	(3)	Low temperat	ture and	high pressure	(4)	High temper	ature and	low pressure
6. ^E	The c	orrection factor	'a' to the	e ideal gas equat	ion corre	sponds to	O	
	(1)	Volume of the			(2)	-	l present	between the gas molecu
	(3)	Density of the	-		(4)			etween the gas molecul
7. ^E	The	orrect order of N	Leomno	unds in its decre	aging ord	ler of ovidation	n states is	
/•	(1)	HNO ₃ , NO, N			(2)	HNO ₃ , NH ₄		
	(3)	HNO ₃ , NO, N			(4)	NH4Cl, N2, 1		
οE	W71. : . :							
' 8. ^E		h one of the follo	(2)	B	(3)	Ga Ga	(4)	In
	(1)	Al	(2)	D	(3)	Ua	(4)	111
9. ^E	Consi	dering Ellinghan	n diagra	m, which of the	following	g metals can be	e used to	reduce alumina?
	(1)	Zn	(2)	Mg	(3)	Fe	(4)	Cu
0. ^E	The c	orrect order of a	tomic ra	dii in group 13 e	lements i	is		
	(1)	B < Al < Ga < Ca	< In < T1		(2)	B < Ga < Al	< Tl < Ir	1
	(3)	B < Al < In <	Ga < Tl		(4)	B < Ga < Al	<In $<$ T	l
1. ^E	Whic	h of the followin	ig statem	ents is <i>not</i> true f	for halog	ens?		
	(1)	All are oxidiz	ing agen	ts				
	(2)	All but fluorin	ne show	positive oxidatio	on states			
	(3)	All form mon	obasic o	xyacids				
	(4)	Chlorine has	the highe	est electron-gain	enthalpy	r		
2. ^E	In the	structure of ClF	3, the nu	mber of lone pai	ir of elect	trons on centra	l atom 'C	'l' is
				*				

(1) $\frac{4\sqrt{3}}{3\sqrt{2}}$ (2) $\frac{3\sqrt{3}}{4\sqrt{2}}$ (3) $\frac{\sqrt{3}}{\sqrt{2}}$ (4) $\frac{1}{2}$

90. ^E	-	sium reacts w				-		e ground state	e electro
	configu (1)	uration of (X) is MgX ₂	(2)	the simplest f Mg ₂ X	ormula f	for this composition Mg_2X_3	ound 1s (4)	Mg_3X_2	
Se	ction -	III (BIOLOG	iY)						
91.	Pollen (1)	grains can -80°C	be stored (2)	for several -196°C	years (3)	in liquid -120°C	nitrogen ha (4)	aving a temp -160°C	oerature
92.	Oxyger (1) (3)	n is not produce <i>Nostoc</i> Green sulph		-	(2) (4)	Cycas Chara			
93.	What is (1) (2) (3) (4)	It functions	as an electr otide source as an enzyi	on carrier. e for ATP synt	hesis.	espiration.		01	
94.	Which (1)	of the following Sodium	g elements (2)	is responsible Potassium	for mair (3)	taining turgo Magnesiu		Calcium	
95.		one of the none of the two <i>Yucca</i>	-	-		-	ationship w	vith a species <i>Viola</i>	s of mo
96.	In whic (1) (3)	th of the follow Ferrous Ferric	ing forms i	s iron absorbed	d by plan (2) (4)	Free elem	ent ic and ferrou	S	
97. 98.	(1) (2) (3) (4)	Fusion of tw	o male gar o male gar d triple fus		egg en tube v	with two diffe		have been pres	sent in In
	for a lot (1) (3)	ng time. This is Sharbati Sor Co-667			(2) (4)	Lerma Ro Basmati	ojo		
99.	for pub (1)		Scientific a	nd Industrial H	Research	(CSIR)	ducing genet	tically modified	d organis
	(2) (3) (4)	Indian Coun	cil of Med	n Genetic Man ical Research (ppraisal Comn	(ICMR)				

100.	Which o lymphocy	•	; is com	monly used as	a vecto	or for introduci	ng a D	NA fragment in hum
	(1)	Ti plasmid	(2)	λ phage	(3)	Retrovirus	(4)	pBR 322
101.		oresources by m and its people is Biopiracy Bio-infringeme	called	nal companies a	nd organ (2) (4)	isations without Biodegradation Bioexploitatior	ı	ation from the concern
102.	The correc (1) (2) (3) (4)	ect order of steps Annealing, Ext Denaturation, I Extension, Der Denaturation, A	tension, I Extensior naturatior	Denaturation n, Annealing n, Annealing	eaction (PCR) is		
103.	Select the (1) (3)	e correct match $F_2 \times Recessive$ Ribozyme	parent - - Nucle	•	(2) (4)	T.H. Morgan G. Mendel		sduction sformation
104.	Niche is (1) (2) (3) (4)	all the biologic	nperature al factors	e an organism e that the organi s in the organism ed by the organism	n's envir	onment	DA.	
105.	Which of t (1)	the following is CO ₂	a second (2)	ary pollutant? SO ₂	(3)	СО	(4)	O ₃
106.	Natality 1 (1) (2) (3) (4)	Birth rate Number of ind Death rate		eaving the habit				
107.	World O2 (1) (3)	zone Day is cele 21 st April 5 th June	brated or	1	(2) (4)	16 th September 22 nd April	ſ	
108.	Secondar Primary o Primary p	y consumer: 120 consumer: 60 g producer: 10 g) g	would be obtain		the following dat		_
	(1)	Pyramid of ene			(2)	Upright pyram		
100	(3)	Inverted pyram			(4)	Upright pyram		
109.		sphere, which o r oxygen?	the foll	owing elements	acts as	a catalyst in deg	gradatior	n of ozone and release
	(1)	Cl	(2)	Fe	(3)	Carbon	(4)	Oxygen

110.	Which o	f the following pairs is	wrongly matched	19	
110.	(1)	ABO blood grouping	: Co-dominanc		
	(2)	XO type sex	: Grasshopper	•	
		determination	11		
	(3)	Starch synthesis in pea	: Multiple alleles	5	
	(4)	T.H. Morgan	: Linkage		
111.	Select the	e correct statement			
	(1)	Punnett square was dev	veloped by a Brit	tish scier	ntist
	(2)	Spliceosomes take part	1 2		
	(3)	Franklin Stahl coined t	he term "linkage	"	
	(4)	Transduction was disc	overed by S. Altr	nan	
112.	The expe	rimental proof for semi-	-conservative rep	lication	of DNA was first shown in a
	(1)	Bacterium (2)	Plant	(3)	Fungus (4) Virus
113.	Select the	e correct match			
	(1)	Alfred Hershey and M	artha Chase - TM	IV	
	(2)	Matthew Meselson and	d F. Stahl – <i>Pisur</i>	n sativui	m
	(3)	Alec Jeffreys – Strepto	ococcus pneumon	niae	
	(4)	Francois Jacob and Jac	eques Monod - La	ac opero	n
114.	Offsets a	re produced by			
	(1)	Mitotic divisions		(2)	Parthenocarpy
	(3)	Meiotic divisions		(4)	Parthenogenesis
115.	Which of	f the following flowers of	only once in its li	fe-time?	
	(1)	Jackfruit		(2)	Mango
	(3)	Bamboo species		(4)	Рарауа
116.	Which of	f the following has prove	ed helpful in pres	serving p	oollen as fossils?
	(1)	Cellulosic intine		(2)	Oil content
	(3)	Pollenkitt		(4)	Sporopollenin
117.	Secondar	y xylem and phloem in	dicot stem are pr	oduced	hv
	(1)	Vascular cambium		(2)	Phellogen
	(3)	Apical meristems		(4)	Axillary meristems
118.		ving little or no seconda			
	(1)	Deciduous angiosperm	IS	(2)	Conifers
	(3)	Grasses		(4)	Cycads
119.	Sweet po	tato is a modified			
	(1)	Adventitious root		(2)	Tap root
	(3)	Stem		(4)	Rhizome
120.	Pneumate	ophores occur in			
	(1)	Free-floating hydrophy	/tes	(2)	Carnivorous plants

- (3) Halophytes (4) Submerged hydrophytes
- 121. Casparian strips occur in
 - (1) Pericycle (2) Cortex
 - (3) Epidermis (4) Endodermis
- **122.** Which of the following statements is correct?
 - (1) *Selaginella* is heterosporous, while *Salvinia* is homosporous
 - (2) Horsetails are gymnosperms
 - (3) Ovules are not enclosed by ovary wall in gymnosperms
 - (4) Stems are usually unbranched in both *Cycas* and *Cedrus*
- **123.** Select the wrong statement:
 - (1) Mushrooms belong to Basidiomycetes
 - (2) Pseudopodia are locomotory and feeding structures in Sporozoans
 - (3) Cell wall is present in members of Fungi and Plantae
 - (4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera
- 124. Match the items given in Column I with those in Column II and select the correct option given below:

		Colum	ın I		Column II			P			
	a.	Herbar	ium	(i)	It is a place have	ving a co	ollection of prese	rved pla	ints and animals		
	b.	Key		(ii)	A list that enur	merates 1	methodically all	the spec	ies found in an area wi		
					brief description aiding identification						
	c.	Museu	m	(iii)	Is a place when	e dried a	and pressed plant	t specim	ens mounted on sheets		
					are kept		*				
	d.	Catalo	gue	(iv)	A booklet cont	aining a	list of characters	s and the	eir alternates which are		
					helpful in iden	tificatior	n of various taxa.				
		a	b	с	d						
	(1)	(ii)	(ii)	(i)	(iv)						
	(2)	(ii)	(iv)	(iii)	(i)						
	(3)	(i)	(iv)	(iii)	(ii)						
	(4)	(iii)	(iv)	(i)	(ii)						
125.				•		•	ed exogenously i		G 1		
	(1)	Alterno	aria	(2)	Agaricus	(3)	Neurospora	(4)	Saccharomyces		
126.	Winged	pollen gi	rains are	present	in						
	(1)	Cycas		(2)	Mango	(3)	Mustard	(4)	Pinus		
127.	Which o	one is wro	ongly ma	atched?							
	(1)	•			- Brown algae	(2)	Gemma cups	- Marc	chantia		
	(3)	Uniflag	gellate g	ametes -	Polysiphonia	(4)	Unicellular org	anism -	Chlorella		

128.	The two	functional group	s charac	cteristic of sugar	s are			
	(1)	Carbonyl and r	nethyl	-	(2)	Carbonyl and	phospha	te
	(3)	Hydroxyl and 1	methyl		(4)	Carbonyl and	hydroxy	1
129.	Which of	f the following is	s not a p	roduct of light r	eaction o	of photosynthesis	5?	
	(1)	NADH	(2)	NADPH	(3)	ATP	(4)	Oxygen
130.	Which an	nong the follow	ing is no	ot a prokaryote?				
	(1)	Mycobacteriun	n		(2)	Nostoc		
	(3)	Saccharomyces	5		(4)	Oscillatoria		
131.	Stomatal	movement is no	ot affecte	ed by				
	(1)	Light			(2)	O2 concentrati	on	
	(3)	Temperature			(4)	CO ₂ concentra	tion	
132.	The Golg	gi complex partic	cipates i	n				
	(1)	Formation of s	ecretory	vesicles	(2)	Respiration in	bacteria	~
	(3)	Fatty acid brea	kdown		(4)	Activation of a	amino ac	zid
133.	Which of	f the following is	s true for	r nucleolus?			X	
	(1)	It is a membrar	ne-bound	d structure				
	(2)	It takes part in	spindle	formation				
	(3)			sent in dividing	cells			
	(4)	It is a site for a	ctive rib	osomal RNA sy	nthesis			
134.	The stage	e during which s	eparatio	n of the paired l	nomologo	ous chromosome	es begins	s is
	(1)	Diplotene	(2)	Diakinesis	(3)	Pachytene	(4)	Zygotene
135.	Stomata	in grass leaf are			6.			
	(1)	Kidney shaped			(2)	Rectangular		
	(3)	Dumb-bell sha			(4)	Barrel shaped		
136	Nissl's b	odies are mainly	compos	sed of		-		
150.	(1)	DNA and RNA		sed of	(2)	Nucleic acids	and SER	
	(3)	Proteins and lip			(4)	Free ribosome		
105				40				
137.		f these statemen						
	(1)	Glycolysis occ	•		nlied wi	th NAD that can	nick un	hydrogen atoms
	(2)	Cirycorysis opt	lates as	long as it is suf	piica wi	in NAD that can	pick up	nyulogen atoms
	(3)	Enzymes of TC	CA cycle	e are present in 1	nitochon	drial matrix		
	(4)	Oxidative phos	phoryla	tion takes place	in outer	mitochondrial m	embran	e
138.	Which of	f the following to	erms des	scribe human de	ntition?			
	(1)	Thecodont, Dip	phyodon	t, Heterodont				
	(2)	Pleurodont, Mo	onophyc	dont, Homodon	t			
	(3)	Thecodont, Dip						
	(4)	Pleurodont, Di	phyodor	nt, Heterodont				

139. Select the incorrect match:

	(1)	Allosomes - Sex cl	romosor	nes
	(2)	Submetacentric - L-shap	ped chroi	mosomes chromosomes
	(3)	Lampbrush - Diplot	ene biva	lents chromosomes
	(4)	Polytene - Oocyt	es of chr	omosomes amphibians
140.	Which of	the following events does not occur in	rough en	doplasmic reticulum?
	(1)	Protein glycosylation	(2)	Cleavage of signal peptide
	(3)	Protein folding	(4)	Phospholipid synthesis
141.	-	ibosomes may associate with a sing eously. Such strings of ribosomes are ter		A to form multiple copies of a polypepti
	(1)	Polyhedral bodies	(2)	Plastidome
	(3)	Polysome	(4)	Nucleosome
142.	All of th	e following are part of an operon except		
172,	(1)	structural genes	(2)	an enhancer
	(3)	an operator	(4)	a promoter
142		-		
143.	A woman (1)	Only sons		mosomes. This chromosome can be inherited b Only grandchildren
	(1) (3)	Only daughters	(2) (4)	Both sons and daughters
144.	Accordin	ng to Hugo de Vries, the mechanism of	evolution	15
	(1)	Saltation Multiple step mutations	(2)	Phenotypic variations
		Saltation Multiple step mutations		
145.	(1) (3) AGGTA	Multiple step mutations	(2) (4)	Phenotypic variations
145.	(1) (3) AGGTA	Multiple step mutations TCGCAT is a sequence from the coding	(2) (4) strand o	Phenotypic variations Minor mutations
145.	(1)(3)AGGTAof the tra	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA?	(2) (4) strand o	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer
145. 146.	 (1) (3) AGGTA of the tra (1) (3) Match th 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) the items given in Column I with those in	(2) (4) strand o ACCU UCCA	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer VAUGCGAU UAGCGUA
	 (1) (3) AGGTA of the tra (1) (3) 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) ne items given in Column I with those in ow:	(2) (4) strand o ACCU UCCA Column	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option
	 (1) (3) AGGTA of the tra (1) (3) Match th 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) ne items given in Column I with those in ow: Column I	(2) (4) strand o ACCU UCCA Column	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option
	 (1) (3) AGGTA of the tra (1) (3) Match th 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) ne items given in Column I with those in ow: Column I Proliferative Phase	(2) (4) strand o ACCU UCCA Column i.	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option
	 (1) (3) AGGTA of the tra (1) (3) Match the given below 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) the items given in Column I with those in ow: Column I Proliferative Phase Secretory Phase	(2) (4) strand o ACCU UCCA Column	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option II Breakdown of endometrial lining Follicular Phase
	 (1) (3) AGGTA of the tra (1) (3) Match th given bell a. 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) ne items given in Column I with those in ow: Column I Proliferative Phase	(2) (4) strand o ACCU UCCA Column i.	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option II Breakdown of endometrial lining
	 (1) (3) AGGTA of the tra (1) (3) Match the given bell a. b. c. 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) the items given in Column I with those in ow: Column I Proliferative Phase Secretory Phase Menstruation a b c	(2) (4) strand o ACCU UCCA Column i. i. ii.	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option II Breakdown of endometrial lining Follicular Phase
	 (1) (3) AGGTA of the tra (1) (3) Match the given bell a. b. c. (1) 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) the items given in Column I with those in ow: Column I Proliferative Phase Secretory Phase Menstruation a b c i iii ii	(2) (4) strand o ACCU UCCA Column i. i. ii.	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option II Breakdown of endometrial lining Follicular Phase
	 (1) (3) AGGTA of the tra (1) (3) Match the given bell a. b. c. 	Multiple step mutations TCGCAT is a sequence from the coding nscribed mRNA? UGGTUTCGCAT (2) AGGUAUCGCAU (4) the items given in Column I with those in ow: Column I Proliferative Phase Secretory Phase Menstruation a b c	(2) (4) strand o ACCU UCCA Column i. i. ii.	Phenotypic variations Minor mutations f a gene. What will be the corresponding sequer AUGCGAU UAGCGUA II and select the correct option II Breakdown of endometrial lining Follicular Phase

147. Which one of the following population interactions is widely used in medical science for the production antibiotics?

(1)	Mutualism	(2)	Parasitism

(3) Commensalism (4) Amensalism

148. All of the following are included in 'ex-situ conservation' except

(1)	Sacred groves	(2)	Botanical gardens
(3)	Wildlife safari parks	(4)	Seed banks

149. Match the items given in Column I with those in Column II and select the correct option given below:

		Colum	nn-I				Colur	nn-II				
	a.	Eutrophication i.						UV-B radiation				
	b.	Sanitary landfill ii.						Deforestation				
	c.	Snow blindness iii.						ent enrichment	t			
	d.	Jhum cultivation iv.					Waste	e disposal				
		a	b		c		d					
	(1)	(i)	(iii)		(iv)		(ii)					
	(2)	(iii)	(iv)		(i)		(ii)					
	(3)	(ii)	(i)		(iii)		(iv)					
	(4)	(i)	(ii)		(iv)		(iii)					
150.	In a gro	wing no	pulation c	of a cou	ntrv							
100.	(1)		-		-	than the	e post-	reproductive i	ndividuals			
	(1)	reproductive individuals are less than the post-reproductive individuals. reproductive and pre-reproductive individuals are equal in number.										
	(3)	—		-	-			reproductive i		5.		
	(4)							eproductive in				
151.		• •	ppy plant		to obtain t	the drug	-			T		
	(1)	Latex		(2)	Roots		(3)	Flowers	(4)	Leave	es	
152.	Among t	he follo	wing sets	of exam	mples for	diverger	nt evo	lution, select th	he incorre	ct option:	:	
	(1)	Heart	of bat, ma	in and c	cheetah		(2)	Brain of bat	t, man and	cheetah		
	(3)	Forelin	mbs of ma	n, bat	and cheeta	ıh	(4)	Eye of octor	pus, bat ar	nd man		
153	Which o	f the fol	lowing is	not an	autoimmu	ne disez	ase?					
100.	(1)		natoid arth		uutoiiiiiiu		(2)	Alzheimer's	disease			
	(1)	Psoria					(4)	Vitiligo				
								C	~ .			
154.				squito	transmitte		•			n of lym	phatic vessels?	
	(1)	Ascari					(2)	Ringworm				
	(3)	Elepha	antiasis				(4)	Amoebiasis				
155.	Conversi	on of m	ilk to cur	d impro	oves its nu	tritional	l value	by increasing	the amou	nt of		
	(1)	Vitam	nin A				(2)	Vitamin B ₁₂	2			
	(3)	Vitam	in D				(4)	Vitamin E				
156.	The simi	larity of	hone stri	icture i	n the forel	imbs of	mant	vertebrates is	an evamn	le of		
150.	(1)	Analog					(2)	Convergent	_			
	(1)	Homo	00				(4)	Adaptive ra				
								•				
157.	Which o		-	naracte	ristics repr			tance of blood		humans	?	
	a.	Domin					b.	Co-dominat				
	c.	Multip	ole allele				d.	Incomplete	dominanc	e		

- e. Polygenic inheritance
- (1) a,b and c (2) b, d and e
- (3) b, c and e (4) a, c and e

158. Hormones secreted by the placenta to maintain pregnancy are

- (1) hCG, hPL, estrogens, relaxin, oxytocin
- (2) hCG, hPL, progestogens, estrogens
- (3) hCG, hPL, progestogens, prolactin
- (4) hCG, progestogens, estrogens, glucocorticoids
- **159.** The contraceptive 'SAHELI'
 - (1) increases the concentration of estrogen and prevents ovulation in females.
 - (2) is an IUD.
 - (3) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
 - (4) is a post-coital contraceptive.
- **160.** The amnion of mammalian embryo is derived from
 - (1) endoderm and mesoderm (2) mesoderm and trophoblast
 - (3) ectoderm and mesoderm (4) ectoderm and endoderm
- 161. The difference between spermiogenesis and spermiation is
 - (1) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
 - (2) In spermiogenesis spermatozoa from Sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
 - (3) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
 - (4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released fror Sertoli cells into the cavity of seminiferous tubules.
- **162.** Which of the following is an amino acid derived hormone?

(1) Ecdysone (2) Estradiol (3) Epinephrine (4) Estriol

- 163. Which of the following structures or regions is incorrectly paired with its functions?
 - (1) Limbic system: consists of fibre tracts that interconnect different regions of brain; controls movement.
 - (2) Hypothalamus: production of releasing hormones and regulation of temperature, hunger and thirst
 - (3) Medulla oblongata: controls respiration and cardiovascular reflexes.
 - (4) Corpus callosum: band of fibers connecting left and right cerebral hemispheres.
- **164.** The transparent lens in the human eye is held in its place by
 - (1) ligaments attached to the iris (2) smooth muscles attached to the iris
 - (3) ligaments attached to the ciliary body (4) smooth muscles attached to the ciliary body
- 165. Which of the following hormones can play a significant role in osteoporosis?
 - (1) Progesterone and Aldosterone (2) Estrogen and Parathyroid hormone
 - (3) Aldosterone and Prolactin (4) Parathyroid hormone and Prolactin

- **166.** Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
 - (1) Increased number of bronchioles; Increased respiratory surface
 - (2) Increased respiratory surface; Inflammation of bronchioles
 - (3) Inflammation of bronchioles; Decreased respiratory surface
 - (4) Decreased respiratory surface; Inflammation of bronchioles
- 167. Match the items given in Column I with those in Column II and select the correct option given below:

		Column I			Column II					
	a.	Tricusp	oid valve	e i. I	Betwe	en left atriu	um and left	t ventricle		•
	b.	Bicuspi	id valve	ii	Betwe	een right ve	entricle and	d pulmona	rv arterv	
	c.					-				
		Semilu	nar valv	e 111	Betw	veen right a	trium and	right ventr	ncle	
		а	b	c						
	(1)	(i)	(iii)	(ii)						
	(2)	(i)	(ii)	(iii)						
	(3)	(iii)	(i)	(ii)						
	(4)	(ii)	(i)	(iii)						
168.	Match t	he items	given ir	n Colun	nn I w	ith those in	Column I	I and selec	et the cor	rrect option given below:
		Colur	nn 1			Col	umn II			
	a.	Tidal	volume			i. 2500 -	3000 mL			
	b.	Inspir	atory Re	eserve		ii. 1100-	1200 mL			
		volun	ne					K		
	c.		atory Re	eserve		iii. 500 -	550 mL	~		
		volun								
	d.	Resid	ual volu	me		iv. 1000-	1100 mL			
		а	b		c	d				
	(1)	iii	i		iv	ii				
	(2)	i	i	v	ii	iii				

- 169. Which of the following gastric cells indirectly help in erythropoiesis?
 - (1) Mucous cells (2) Goblet cells (3) Chief cells (4) Parietal cells

170. Match the items given in Column I with those in Column II and select the correct option given below:

	Co	olumn 1		Column II			
a.	Fil	orinogen		(i) Osmotic balance			
b.	Gl	obulin		(ii) Blood clotting			
c.	Al	bumin		(iii) Defence mechanism			
(1)	a (i)	b (ii)	c (iii)				
(1) (2)	(i)	(iii)	(ii)				

	(3) (4)	(iii) (ii)	(ii) (iii)	(i) (i)				
171.	Which of (1) (3)	the follo Silicos Anthra	is	an occup	oational	respirato	ry disor (2) (4)	der? Botulism Emphysema
172.	Calcium (1) (2) (3) (4)	Activat Detach Binds t	tes the n les the m to tropor	nyosin A nyosin he nin to rer	TPase b ead from nove the	-	g to it. 1 filame g of acti	
173. a b c d		Colum Glycos Gout Renal o	n I ouria		i. i. ii. iii. iv.	Column Accumn Mass of Inflamn	n II ulation f crystal nation i	II and select the correct option given below: of uric acid in joints llised salts within the kidney n glomeruli icose in urine
	(1) (2) (3) (4)	a i ii iii iv	b ii iii ii i	c iii i iv ii	d iv iv i iii			FOIND
174. a		ne items Colum (Funct Iltration	in I	ı Columi	Colum		cory sys	II and select the correct option given below:
b c d	. Transp	ntration of ort of ur e of urin	rine		ii. iii. iv. v.	Ureter Urinary Malpigl Proxim	hian cor	
	 (1) (2) (3) (4) 	a iv v iv v	b i iv v iv	c ii i ii i	d iii ii iii iii			
175.	Which of (1) (2) (3) (4)	Present Forewi Present	ce of cau ngs with	udal style n darker ooat shap	es tegmina	-		cockroach from a female cockroach? dominal segment
176.	Identify (1)	the verte Reptil	-	(2)	Aves	character	ized by (3)	crop and gizzard in its digestive system Amphibia (4) Osteichthyes

177.	Which or	ne of these animals	is no	ot a homeotl	nerm?			
	(1)	Chelone			(2)	Camelus		
	(3)	Macropus			(4)	Psittacula		
178.	Which o	of the following org	anisı	ns are know	vn as chief p	roducers in the	oceans?	
	(1)	Diatoms			(2)	Cyanobacter	ia	
	(3)	Dinoflagellates			(4)	Euglenoids		
179.	Which o	of the following ani	mals	does not un	dergo metar	norphosis?		
	(1)	Tunicate (2	2)	Moth	(3)	Earthworm	(4)	Starfish
180.	Ciliates of	differ from all other	r prot	ozoans in				
	(1)	having a contraction	ile va	cuole for re	moving exc	ess water		
	(2)	using pseudopodi	a for	capturing p	rey			
	(3)	using flagella for						
	(4)	having two types	ofnu	ıclei				0
							O	
						<		
						Ť		
					,)			

NEE

NEET : 2018 - Paper Code

ANSWER KEY

PHYSICS		CHEMISTRY					
Q 1	1	Q 46	3	Q 91	2	Q 136	4
Q 2	1	Q 47	1	Q 92	3	Q 137	4
Q 3	4	Q 48	3	Q 93	1	Q 138	1
Q 4	4	Q 49	4	Q 94	2	Q 139	4
Q 5	1	Q 50	1	Q 95	1	Q 140	4
Q 6	4	Q 51	2	Q 96	1	Q 141	3
Q 7	4	Q 52	3	Q 97	4	Q 142	2
Q 8	4	Q 53	4	Q 98	4	Q 143	4
Q 9	3	Q 54	4	Q 99	4	Q 144	1
Q 10	3	Q 55	1	Q 100	3	Q 145	3
Q 11	1	Q 56	4	Q 101	1	Q 146	2
Q 12	3	Q 57	2	Q 102	4	Q 147	4
Q 13	1	Q 58	2	Q 103	3	Q 148	1
Q 14	3	Q 59	4	Q 104	4	Q 149	2
Q 15	3	Q 60	3	Q 105	4	Q 150	3
Q 16	1	Q 61	4	Q 106	1	Q 151	1
Q 17	1	Q 62	3	Q 107	2	Q 152	4
Q 18	1	Q 63	2	Q 108	3	Q 153	2
Q 19	4	Q 64	1&3	Q 109	1	Q 154	3
Q 20	3	Q 65	1	Q 110	3	Q 155	2
Q 21	3	Q 66	4	Q 111	\mathbf{O}_1	Q 156	3
Q 22	1	Q 67	4	Q 112	1	Q 157	1
Q 23	3	Q 68	4	Q113	4	Q 158	2
Q 24	1	Q 69	2	Q 114	1	Q 159	3
Q 25	2	Q 70	3	Q 115	3	Q 160	3
Q 26	1	Q 71	3	Q 116	4	Q 161	4
Q 27	4	Q 72	2	Q 117	1	Q 162	3
Q 28	4	Q 73	1	Q 118	3	Q 163	1
Q 29	1	Q 74	1	Q 119	1	Q 164	3
Q 30	1	Q 75	3	Q 120	3	Q 165	2
Q 31	3	Q 76	4	Q 121	4	Q 166	3
Q 32	3	Q 77	3	Q 122	3	Q 167	3
Q 33	1	Q 78	2	Q 123	2	Q 168	1
Q 34	4	Q 79	2	Q 124	4	Q 169	4
Q 35	2	Q 80	4	Q 125	2	Q 170	4
Q 36	3	Q 81	2	Q 126	4	Q 171	1
Q 37	3	Q 82	1	Q 127	3	Q 172	3
Q 38	2	Q 83	1	Q 128	4	Q 173	4
Q 39	3	Q 84	3	Q 129	1	Q 174	1
Q 40	2	Q 85	3	Q 130	3	Q 175	1
Q 41	1	Q 86	4	Q 131	2	Q 176	2
Q 42	4	Q 87	1	Q 132	1	Q 177	1
Q 43	3	Q 88	2	Q 133	4	Q 178	1
Q 44	1	Q 89	2	Q 134	1	Q 179	3
Q 45	4	Q 90	4	Q 135	3	Q 180	4
×	•	X / V	•	2.00		2.00	